ST337-15 Bayesian Forecasting and Intervention
Introductory description
This module is available for students on a course where it is a listed option and as an Unusual Option to students who have completed the prerequisite modules.
Statistics Students:
- ST218 Mathematical Statistics A AND ST219 Mathematical Statistics B; or
- ST228 Mathematical Methods for Statistics and Probability, and ST229 Probability for Mathematical Statistics, and ST230 Mathematical Statistics.
- Non-Statistics Students:
- ST104 Statistical Laboratory and ST220 Introduction to Mathematical Statistics; or,
- ST121 Statistical Laboratory. and ST232/ST233 Introduction to Mathematical Statistics.
Module aims
This course is concerned with the theory and practice of short-term forecasting, using both data and subjective information. The course focuses on Dynamic Linear Models (DLM). DLM's are a class of Bayesian Forecasting Models which generalise linear regression models and static statistical linear models. Some extensions to nonlinear dynamic models are also considered.
Forecasting is a vital prerequisite to decision making. This course offers a very powerful fundamental probabilistic approach to forecasting, controlling and learning about uncertain commercial, financial, economic, production, environmental and medical dynamic systems. The theory will be illustrated by real examples from industry, marketing, finance, government, agriculture etc.
A familiarity with the material in this module will be very useful to all students planning a career involving a component of industrial, business or government statistics.
Outline syllabus
This is an indicative module outline only to give an indication of the sort of topics that may be covered. Actual sessions held may differ.
- State space modelling
- Bayesian updating of beliefs
- Specifying Dynamic Linear Models
- Updating Dynamic Linear Models, forecasting
- Building Dynamic Linear Models, accommodating external information
- ARIMA models, stationarity
Learning outcomes
By the end of the module, students should be able to:
- Acquire an appreciation of forecasting recurrences and be able to calculate these for special cases.
- Know how to select an appropriate model in simple scenarios.
- Have an acquaintance with the most useful models in the class of DLMs for statistical forecasting in a business environment.
- Know how to intervene in these processes in the light of external information.
- Have an appreciation of diagnostic methods and estimation techniques for this model class.
Indicative reading list
View reading list on Talis Aspire
Subject specific skills
-
Demonstrate facility with rigorous statistical methods.
-
Evaluate, select and apply appropriate mathematical and/or statistical techniques.
-
Demonstrate knowledge of and facility with formal statistical concepts, both explicitly and by applying them to the solution of mathematical problems.
-
Create structured and coherent arguments communicating them in oral/written form.
-
Construct logical arguments with clear identification of assumptions and conclusions.
-
Reason critically, carefully, and logically.
Transferable skills
-
Problem solving: Use rational and logical reasoning to deduce appropriate and well-reasoned conclusions. Retain an open mind, optimistic of finding solutions, thinking laterally and creatively to look beyond the obvious. Know how to learn from failure.
-
Self awareness: Reflect on learning, seeking feedback on and evaluating personal practices, strengths and opportunities for personal growth.
-
Communication: Present arguments, knowledge and ideas, in a range of formats.
-
Professionalism: Prepared to operate autonomously. Aware of how to be efficient and resilient. Manage priorities and time. Self-motivated, setting and achieving goals, prioritising tasks.
Study time
Type | Required | Optional |
---|---|---|
Lectures | 30 sessions of 1 hour (20%) | 2 sessions of 1 hour |
Private study | 120 hours (80%) | |
Total | 150 hours |
Private study description
Weekly revision of lecture notes and materials, wider reading, practice exercises and preparing for examination.
Costs
No further costs have been identified for this module.
You must pass all assessment components to pass the module.
Students can register for this module without taking any assessment.
Assessment group B4
Weighting | Study time | Eligible for self-certification | |
---|---|---|---|
In-person Examination | 100% | No | |
The examination paper will contain four questions, of which the best marks of THREE questions will be used to calculate your grade.
|
Assessment group R3
Weighting | Study time | Eligible for self-certification | |
---|---|---|---|
In-person Examination - Resit | 100% | No | |
The examination paper will contain four questions, of which the best marks of THREE questions will be used to calculate your grade.
|
Feedback on assessment
Solutions and cohort level feedback will be provided for the examination.
Anti-requisite modules
If you take this module, you cannot also take:
- ST405-15 Bayesian Forecasting and Intervention with Advanced Topics
Courses
This module is Optional for:
- Year 3 of UCSA-G4G1 Undergraduate Discrete Mathematics
- Year 3 of UCSA-G4G3 Undergraduate Discrete Mathematics
- Year 4 of UCSA-G4G4 Undergraduate Discrete Mathematics (with Intercalated Year)
- Year 4 of UCSA-G4G2 Undergraduate Discrete Mathematics with Intercalated Year
-
USTA-G300 Undergraduate Master of Mathematics,Operational Research,Statistics and Economics
- Year 3 of G300 Mathematics, Operational Research, Statistics and Economics
- Year 4 of G300 Mathematics, Operational Research, Statistics and Economics
This module is Option list A for:
- Year 4 of USTA-G300 Undergraduate Master of Mathematics,Operational Research,Statistics and Economics
- Year 5 of USTA-G301 Undergraduate Master of Mathematics,Operational Research,Statistics and Economics (with Intercalated
- Year 4 of USTA-G1G3 Undergraduate Mathematics and Statistics (BSc MMathStat)
-
USTA-G1G4 Undergraduate Mathematics and Statistics (BSc MMathStat) (with Intercalated Year)
- Year 4 of G1G4 Mathematics and Statistics (BSc MMathStat) (with Intercalated Year)
- Year 5 of G1G4 Mathematics and Statistics (BSc MMathStat) (with Intercalated Year)
- Year 3 of USTA-GG14 Undergraduate Mathematics and Statistics (BSc)
- Year 4 of USTA-GG17 Undergraduate Mathematics and Statistics (with Intercalated Year)
- Year 3 of USTA-Y602 Undergraduate Mathematics,Operational Research,Statistics and Economics
- Year 4 of USTA-Y603 Undergraduate Mathematics,Operational Research,Statistics,Economics (with Intercalated Year)
This module is Option list B for:
- Year 3 of USTA-G302 Undergraduate Data Science
- Year 3 of USTA-G304 Undergraduate Data Science (MSci)
- Year 4 of USTA-G303 Undergraduate Data Science (with Intercalated Year)
-
UMAA-G105 Undergraduate Master of Mathematics (with Intercalated Year)
- Year 4 of G105 Mathematics (MMath) with Intercalated Year
- Year 5 of G105 Mathematics (MMath) with Intercalated Year
-
USTA-G301 Undergraduate Master of Mathematics,Operational Research,Statistics and Economics (with Intercalated
- Year 3 of G30E Master of Maths, Op.Res, Stats & Economics (Actuarial and Financial Mathematics Stream) Int
- Year 4 of G30E Master of Maths, Op.Res, Stats & Economics (Actuarial and Financial Mathematics Stream) Int
- Year 3 of UMAA-G100 Undergraduate Mathematics (BSc)
-
UMAA-G103 Undergraduate Mathematics (MMath)
- Year 3 of G100 Mathematics
- Year 3 of G103 Mathematics (MMath)
- Year 4 of G103 Mathematics (MMath)
- Year 4 of UMAA-G107 Undergraduate Mathematics (MMath) with Study Abroad
-
UMAA-G106 Undergraduate Mathematics (MMath) with Study in Europe
- Year 3 of G106 Mathematics (MMath) with Study in Europe
- Year 4 of G106 Mathematics (MMath) with Study in Europe
- Year 3 of USTA-G1G3 Undergraduate Mathematics and Statistics (BSc MMathStat)
- Year 4 of UMAA-G101 Undergraduate Mathematics with Intercalated Year
This module is Option list E for:
- Year 3 of USTA-G300 Undergraduate Master of Mathematics,Operational Research,Statistics and Economics
This module is Option list F for:
-
USTA-G301 Undergraduate Master of Mathematics,Operational Research,Statistics and Economics (with Intercalated
- Year 3 of G30H Master of Maths, Op.Res, Stats & Economics (Statistics with Mathematics Stream)
- Year 4 of G30H Master of Maths, Op.Res, Stats & Economics (Statistics with Mathematics Stream)