MA4H0-15 Applied Dynamical Systems
Introductory description
This course will introduce and develop the notions underlying the geometric theory of dynamical systems and ordinary differential equations.
Module aims
This course will introduce and develop the notions underlying the geometric theory of dynamical systems and ordinary differential equations. Particular attention will be paid to ideas and techniques that are motivated by applications in a range of the physical, biological and chemical sciences. In particular, motivating examples will be taken from chemical reaction network theory, climate models, fluid motion, celestial mechanics and neuronal dynamics.
Outline syllabus
This is an indicative module outline only to give an indication of the sort of topics that may be covered. Actual sessions held may differ.
The module will be structured around the following topics:
- Review of basic theory: flows, notions of stability, linearization, phase portraits, etc;
- `Solvable' systems: integrability and gradient structure, applications in celestial mechanics and chemical reaction networks;
- Invariant manifold theorems: stable, unstable and center manifolds;
- Bifurcation theory from a geometric perspective;
- Compactification techniques: flow at infinity, blow-up, collision manifolds;
- Chaotic dynamics: horsehoes, Melnikov method and discussion of strange attractors;
- Singular perturbation theory: averaging and normally hyperbolic manifolds.
Learning outcomes
By the end of the module, students should be able to:
- See outline syllabus.
Subject specific skills
See outline syllabus
Transferable skills
Students will acquire key reasoning and problem solving skills which will empower them to address new problems with confidence.
Study time
Type | Required |
---|---|
Lectures | 30 sessions of 1 hour (20%) |
Tutorials | 9 sessions of 1 hour (6%) |
Private study | 111 hours (74%) |
Total | 150 hours |
Private study description
Review lectured material and work on set exercises.
Costs
No further costs have been identified for this module.
You do not need to pass all assessment components to pass the module.
Assessment group B1
Weighting | Study time | Eligible for self-certification | |
---|---|---|---|
In-person Examination | 100% | No | |
3 hour exam, no books allowed
|
Assessment group R
Weighting | Study time | Eligible for self-certification | |
---|---|---|---|
In-person Examination - Resit | 100% | No | |
|
Feedback on assessment
Exam feedback
Courses
This module is Optional for:
- Year 1 of TMAA-G1PE Master of Advanced Study in Mathematical Sciences
- Year 1 of TMAA-G1PD Postgraduate Taught Interdisciplinary Mathematics (Diploma plus MSc)
- Year 1 of TMAA-G1P0 Postgraduate Taught Mathematics
- Year 1 of TMAA-G1PC Postgraduate Taught Mathematics (Diploma plus MSc)
This module is Option list A for:
- Year 2 of TMAA-G1PD Postgraduate Taught Interdisciplinary Mathematics (Diploma plus MSc)
- Year 2 of TMAA-G1PC Postgraduate Taught Mathematics (Diploma plus MSc)
- Year 4 of UPXA-FG31 Undergraduate Mathematics and Physics (MMathPhys)
- Year 4 of USTA-G1G3 Undergraduate Mathematics and Statistics (BSc MMathStat)
- Year 5 of USTA-G1G4 Undergraduate Mathematics and Statistics (BSc MMathStat) (with Intercalated Year)
This module is Option list B for:
- Year 2 of TMAA-G1PD Postgraduate Taught Interdisciplinary Mathematics (Diploma plus MSc)
- Year 2 of TMAA-G1PC Postgraduate Taught Mathematics (Diploma plus MSc)
- Year 4 of UCSA-G4G3 Undergraduate Discrete Mathematics
- Year 5 of UCSA-G4G4 Undergraduate Discrete Mathematics (with Intercalated Year)
- Year 3 of USTA-G1G3 Undergraduate Mathematics and Statistics (BSc MMathStat)
- Year 4 of USTA-G1G4 Undergraduate Mathematics and Statistics (BSc MMathStat) (with Intercalated Year)
This module is Option list C for:
-
UMAA-G105 Undergraduate Master of Mathematics (with Intercalated Year)
- Year 3 of G105 Mathematics (MMath) with Intercalated Year
- Year 4 of G105 Mathematics (MMath) with Intercalated Year
- Year 5 of G105 Mathematics (MMath) with Intercalated Year
-
UMAA-G103 Undergraduate Mathematics (MMath)
- Year 3 of G103 Mathematics (MMath)
- Year 4 of G103 Mathematics (MMath)
-
UMAA-G106 Undergraduate Mathematics (MMath) with Study in Europe
- Year 3 of G106 Mathematics (MMath) with Study in Europe
- Year 4 of G106 Mathematics (MMath) with Study in Europe