MA377-15 Rings and Modules
Introductory description
A ring is an important fundamental concept in algebra and includes integers, polynomials and matrices as some of the basic examples. Ring theory has applications in number theory and geometry. A module over a ring is a generalization of vector space over a field. The study of modules over a ring R provides us with an insight into the structure of R. In this module we shall develop ring and module theory leading to the fundamental theorems of Wedderburn and some of its applications.
Module aims
To realise the importance of rings and modules as central objects in algebra and to study some applications.
Outline syllabus
This is an indicative module outline only to give an indication of the sort of topics that may be covered. Actual sessions held may differ.
Rings, algebras, division rings, classification of real division algebras, modules, free modules, Zorn's Lemma, existence of basis for modules over division rings, Wedderburn's little theorem.
Learning outcomes
By the end of the module, students should be able to:
- The importance of a ring as a fundamental object in algebra.
- The concept of a module as a generalisation of a vector space and an Abelian group.
- Constructions such as direct sum, product and tensor product.
- Simple modules, Schur's lemma.
- Semisimple modules, artinian modules, their endomorphisms. Examples.
- Radical, simple and semisimple artinian rings. Examples.
- The Artin-Wedderburn theorem.
- The concept of central simple algebras, the theorems of Wedderburn and Frobenius.
Indicative reading list
Abstract Algebra by David S. Dummit, Richard M. Foote, ISBN: 0471433349
Noncommutative Algebra (Graduate Texts in Mathematics) by Benson Farb, R. Keith Dennis, ISBN: 038794057X
Subject specific skills
Linear algebra is a key tool that under-pins many of the real world applications of mathematics. This module provides students with a far deeper conceptual understanding of linear algebra by replacing fields as the source of scalars with rings. It simultaneously introduces remarkable flexibility in allowing modules or vector spaces with potentially infinite dimension.
Transferable skills
Students will acquire key reasoning and problem solving skills which will empower them to address new problems with confidence.
Study time
Type | Required |
---|---|
Lectures | 30 sessions of 1 hour (20%) |
Tutorials | 9 sessions of 1 hour (6%) |
Private study | 111 hours (74%) |
Total | 150 hours |
Private study description
Review lectured material and work on set exercises.
Costs
No further costs have been identified for this module.
You do not need to pass all assessment components to pass the module.
Students can register for this module without taking any assessment.
Assessment group D1
Weighting | Study time | Eligible for self-certification | |
---|---|---|---|
Coursework | 15% | No | |
In-person Examination | 85% | No | |
|
Assessment group R
Weighting | Study time | Eligible for self-certification | |
---|---|---|---|
In-person Examination - Resit | 100% | No | |
|
Feedback on assessment
Marked coursework and exam feedback.
Courses
This module is Optional for:
- Year 1 of TMAA-G1PD Postgraduate Taught Interdisciplinary Mathematics (Diploma plus MSc)
- Year 1 of TMAA-G1PC Postgraduate Taught Mathematics (Diploma plus MSc)
- Year 3 of UCSA-G4G1 Undergraduate Discrete Mathematics
- Year 3 of UCSA-G4G3 Undergraduate Discrete Mathematics
- Year 4 of UCSA-G4G2 Undergraduate Discrete Mathematics with Intercalated Year
-
USTA-G300 Undergraduate Master of Mathematics,Operational Research,Statistics and Economics
- Year 3 of G300 Mathematics, Operational Research, Statistics and Economics
- Year 4 of G300 Mathematics, Operational Research, Statistics and Economics
- Year 4 of UECA-GL12 Undergraduate Mathematics and Economics (with Intercalated Year)
This module is Core option list B for:
- Year 3 of UMAA-GV17 Undergraduate Mathematics and Philosophy
- Year 3 of UMAA-GV19 Undergraduate Mathematics and Philosophy with Specialism in Logic and Foundations
This module is Core option list D for:
- Year 4 of UMAA-GV19 Undergraduate Mathematics and Philosophy with Specialism in Logic and Foundations
This module is Option list A for:
-
TMAA-G1PD Postgraduate Taught Interdisciplinary Mathematics (Diploma plus MSc)
- Year 1 of G1PD Interdisciplinary Mathematics (Diploma plus MSc)
- Year 2 of G1PD Interdisciplinary Mathematics (Diploma plus MSc)
- Year 1 of TMAA-G1P0 Postgraduate Taught Mathematics
-
TMAA-G1PC Postgraduate Taught Mathematics (Diploma plus MSc)
- Year 1 of G1PC Mathematics (Diploma plus MSc)
- Year 2 of G1PC Mathematics (Diploma plus MSc)
-
UMAA-G105 Undergraduate Master of Mathematics (with Intercalated Year)
- Year 3 of G105 Mathematics (MMath) with Intercalated Year
- Year 5 of G105 Mathematics (MMath) with Intercalated Year
- Year 3 of UMAA-G100 Undergraduate Mathematics (BSc)
-
UMAA-G103 Undergraduate Mathematics (MMath)
- Year 3 of G100 Mathematics
- Year 3 of G103 Mathematics (MMath)
- Year 4 of G103 Mathematics (MMath)
-
UMAA-G106 Undergraduate Mathematics (MMath) with Study in Europe
- Year 3 of G106 Mathematics (MMath) with Study in Europe
- Year 4 of G106 Mathematics (MMath) with Study in Europe
- Year 3 of UPXA-FG33 Undergraduate Mathematics and Physics (BSc MMathPhys)
- Year 3 of UPXA-GF13 Undergraduate Mathematics and Physics (BSc)
- Year 3 of UPXA-FG31 Undergraduate Mathematics and Physics (MMathPhys)
- Year 4 of USTA-G1G3 Undergraduate Mathematics and Statistics (BSc MMathStat)
- Year 5 of USTA-G1G4 Undergraduate Mathematics and Statistics (BSc MMathStat) (with Intercalated Year)
- Year 4 of UMAA-G101 Undergraduate Mathematics with Intercalated Year
- Year 3 of USTA-Y602 Undergraduate Mathematics,Operational Research,Statistics and Economics
- Year 4 of USTA-Y603 Undergraduate Mathematics,Operational Research,Statistics,Economics (with Intercalated Year)
This module is Option list B for:
- Year 1 of TMAA-G1PE Master of Advanced Study in Mathematical Sciences
- Year 3 of USTA-G1G3 Undergraduate Mathematics and Statistics (BSc MMathStat)
- Year 4 of USTA-G1G4 Undergraduate Mathematics and Statistics (BSc MMathStat) (with Intercalated Year)
- Year 3 of USTA-GG14 Undergraduate Mathematics and Statistics (BSc)
- Year 4 of USTA-GG17 Undergraduate Mathematics and Statistics (with Intercalated Year)
This module is Option list E for:
-
USTA-G300 Undergraduate Master of Mathematics,Operational Research,Statistics and Economics
- Year 3 of G30D Master of Maths, Op.Res, Stats & Economics (Statistics with Mathematics Stream)
- Year 4 of G30D Master of Maths, Op.Res, Stats & Economics (Statistics with Mathematics Stream)
-
USTA-G301 Undergraduate Master of Mathematics,Operational Research,Statistics and Economics (with Intercalated
- Year 3 of G30H Master of Maths, Op.Res, Stats & Economics (Statistics with Mathematics Stream)
- Year 4 of G30H Master of Maths, Op.Res, Stats & Economics (Statistics with Mathematics Stream)
- Year 5 of G30H Master of Maths, Op.Res, Stats & Economics (Statistics with Mathematics Stream)