Skip to main content Skip to navigation

MA263-10 Multivariable Analysis

Department
Warwick Mathematics Institute
Level
Undergraduate Level 2
Module leader
Felix Schulze
Credit value
10
Module duration
10 weeks
Assessment
Multiple
Study location
University of Warwick main campus, Coventry

Introductory description

Mathematical Analysis is the heart of modern Mathematics. This module is the final in a series of modules where the subject of Analysis is rigorously developed in many dimensional setting.

Module aims

extend the analysis of one variable from the first year to the multivariable context.

Outline syllabus

This is an indicative module outline only to give an indication of the sort of topics that may be covered. Actual sessions held may differ.

  • Different notions of differentiability of functions of several variables
  • Chain rule, (generalised) mean value inequality and other properties of differentiable functions
  • Inverse Function Theorem and Implicit Function Theorem, with applications to regular curves and hypersurfaces
  • Higher Dimensional Riemann Integration
  • Vector Fields and the theorems of Green, Gauss and Stokes, with some applications to PDEs.
  • Maxima, minima and saddles and constrained critical points.

Learning outcomes

By the end of the module, students should be able to:

  • learn the basic concepts, theorems and calculations of multivariable analysis
  • understand the Implicit and Inverse Function Theorems and their applications
  • acquire a working knowledge of vector fields and the Integral Theorems of Vector Calculus
  • learn how to analyse and classify critical points using Taylor expansions

Indicative reading list

  • M. Spivak, Calculus on Manifolds: a modern approach to classical theorems of advanced calculus
  • James J. Callahan, Advanced Calculus: A Geometric View

Subject specific skills

Multivariable Analysis gives students tools to do rigorous Analysis in higher dimensional spaces. Students will learn definitions, theorems and calculations with vector-valued functions of many variables, for instance, Inverse and Implicit Function Theorems, vector fields, maxima, minima and saddles.

Transferable skills

Students will acquire key reasoning and problem solving skills, empower them to address new problems with confidence.

Study time

Type Required
Lectures 30 sessions of 1 hour (30%)
Seminars 9 sessions of 1 hour (9%)
Private study 61 hours (61%)
Total 100 hours

Private study description

Working on assignments, going over lecture notes, text books, exam revision.

Costs

No further costs have been identified for this module.

You do not need to pass all assessment components to pass the module.

Assessment group D1
Weighting Study time Eligible for self-certification
Assignments 15% No
Examination 85% No
  • Answerbook Pink (12 page)
Assessment group R1
Weighting Study time Eligible for self-certification
In-person Examination - Resit 100% No
  • Answerbook Pink (12 page)
Feedback on assessment

Marked homework (both assessed and formative) is returned and discussed in smaller classes. Exam feedback is given.

Past exam papers for MA263

Courses

This module is Core for:

  • Year 2 of UMAA-G105 Undergraduate Master of Mathematics (with Intercalated Year)
  • Year 2 of UMAA-G103 Undergraduate Mathematics (MMath)

This module is Core optional for:

  • Year 2 of UMAA-G100 Undergraduate Mathematics (BSc)
  • Year 2 of UMAA-G103 Undergraduate Mathematics (MMath)
  • Year 2 of UMAA-G1NC Undergraduate Mathematics and Business Studies
  • Year 2 of UMAA-G1N2 Undergraduate Mathematics and Business Studies (with Intercalated Year)
  • Year 2 of UMAA-G101 Undergraduate Mathematics with Intercalated Year

This module is Optional for:

  • Year 3 of USTA-G300 Undergraduate Master of Mathematics,Operational Research,Statistics and Economics

This module is Option list A for:

  • Year 3 of UMAA-G100 Undergraduate Mathematics (BSc)
  • Year 3 of UMAA-G103 Undergraduate Mathematics (MMath)
  • Year 2 of UMAA-GL11 Undergraduate Mathematics and Economics
  • Year 2 of UECA-GL12 Undergraduate Mathematics and Economics (with Intercalated Year)
  • Year 2 of UPXA-GF13 Undergraduate Mathematics and Physics (BSc)
  • UPXA-FG31 Undergraduate Mathematics and Physics (MMathPhys)
    • Year 2 of GF13 Mathematics and Physics
    • Year 2 of FG31 Mathematics and Physics (MMathPhys)
  • Year 2 of USTA-GG14 Undergraduate Mathematics and Statistics (BSc)

This module is Option list B for:

  • Year 3 of USTA-GG14 Undergraduate Mathematics and Statistics (BSc)
  • Year 3 of USTA-Y602 Undergraduate Mathematics,Operational Research,Statistics and Economics

This module is Option list C for:

  • Year 3 of USTA-G1G3 Undergraduate Mathematics and Statistics (BSc MMathStat)
  • Year 2 of USTA-Y602 Undergraduate Mathematics,Operational Research,Statistics and Economics