CS126-15 Design of Information Structures

25/26

Department Computer Science Level Undergraduate Level 1 Module leader Richard Kirk Credit value 15 Module duration 10 weeks Assessment Multiple Study location University of Warwick main campus, Coventry

Description

Introductory description

CS126 is all about data structures and how to program them.

We are interested in: basic data structures; how to mathematically analyse them; how we can program those data structures; how we can represent them efficiently; how we can reason about them (in a formal manner).

We are also interested in common algorithms that use data structures, including: searching for data; sorting data.

Module aims

The module aims for students to:

- gain familiarity with the specification, implementation and use of some standard abstract data types (ADTs) such as linked-lists, stacks, queues, graphs etc.
- learn some standard algorithms for common tasks (such as searching and sorting) and some elementary methods of measuring the complexity, and of showing the correctness, of algorithms;

- learn how to program with non-standard ADTs using an object-oriented language.
- explore how ADTs can be developed with good software engineering principles.

Outline syllabus

This is an indicative module outline only to give an indication of the sort of topics that may be covered. Actual sessions held may differ.

- Types and their properties: simple types in programming languages; relationship between familiar mathematical and program objects of given type. Using predicate logic to state properties of types and their operations in terms of pre- and post-conditions.
- Abstract data types: specification of familiar abstract objects (eg complex numbers, sets, sequences, matrices) and their operations, comparison with their implementation using a typical programming language. Specification and implementation of some important standard types (eg strings, stacks and queues).
- Algorithms: relationship between data structures and algorithms; some standard algorithms for searching, sorting and pattern matching. Elementary analysis of complexity. Reasoning about the correctness of the implementation of simple algorithms.

Learning outcomes

By the end of the module, students should be able to:

- A familiarity with a range of standard ADTs and how they can be used to accomplish common programming tasks.
- Assess the complexity and correctness of simple algorithms, and choose appropriate algorithms for simple tasks.
- Gain practical experience of designing user-defined ADTs, and associated algorithms, for a non-standard application.
- Apply good software engineering principles to a larger software project, using data structures as a basis for this

Indicative reading list

Please see Talis Aspire link for most up to date list.

View reading list on Talis Aspire

Subject specific skills

- Specifying abstract data types and implementing them in an object-oriented programming language
- Estimating the asymptotic running time of simple algorithms
- Using basic data structures to implement efficient algorithms

Transferable skills

Creative problem solving

Study

Study time

Туре	Required
Lectures	30 sessions of 1 hour (20%)
Practical classes	8 sessions of 2 hours (11%)
Private study	104 hours (69%)
Total	150 hours

Private study description

- Background reading.
- Creative problem solving, either individually or in groups.
- Programming for the lab assignments and coursework.
- Revision.

Costs

No further costs have been identified for this module.

Assessment

You do not need to pass all assessment components to pass the module.

Students can register for this module without taking any assessment.

Assessment group C5

	Weighting	Study time	Eligible for self-certification
Lab session 1	2%		Yes (extension)
Marked Laboratory s self-certification via e	ession Week 3. This as extension.	sessment is worth	less than 3 CATS, so is eligible for
Lab session 2	2%		Yes (extension)

	270	
Marked Laboratory session	Week 4. This assessment is worth less	s than 3 CATS, so is eligible for
self-certification via extensio	n.	

Lab session 3	2%	Yes (extension)
		Ϋ́,

	Weighting	Study time	Eligible for self-certification
Marked Laboratory session self-certification via extension	Week 5. This asses on.	sment is worth les	s than 3 CATS, so is eligible for
Lab session 4	2%		Yes (extension)
Marked Laboratory session Week 6. This assessment is worth less than 3 CATS, so is eligible for self-certification via extension.			
Lab session 5	2%		Yes (extension)
Marked Laboratory sessions Week 7. This assessment is worth less than 3 CATS, so is eligible for self-certification via extension.			
Programming assignment	40%		No
Programming Assignment self-certification.	This assessment is	worth more than 3	CATS, so is not eligible for
In-person Examination Examination	50%		No

• Answerbook Pink (12 page)

Assessment group R3

	Weighting	Study time	Eligible for self-certification
In-person Examination - Resit	100%		No
Resit Examination			

• Answerbook Pink (12 page)

Feedback on assessment

Mark and written feedback for coursework returned via Tabula.

Past exam papers for CS126

Availability

Pre-requisites

Students must have studied the material in CS118 or MA117

To take this module, you must have passed:

- Any of
 - <u>CS118-15 Programming for Computer Scientists</u>
 - MA117-12 Programming for Scientists

Courses

Course availability information is based on the current academic year, so it may change. This module is Core for:

- Year 1 of UCSA-G500 Undergraduate Computer Science
- UCSA-G503 Undergraduate Computer Science MEng
 - Year 1 of G500 Computer Science
 - Year 1 of G503 Computer Science MEng
- Year 1 of UCSA-I1N1 Undergraduate Computer Science with Business Studies
- Year 1 of UCSA-G406 Undergraduate Computer Systems Engineering
- Year 1 of UCSA-G408 Undergraduate Computer Systems Engineering
- Year 1 of USTA-G302 Undergraduate Data Science
- Year 1 of USTA-G304 Undergraduate Data Science (MSci)
- Year 1 of UCSA-G4G1 Undergraduate Discrete Mathematics
- Year 1 of UCSA-G4G3 Undergraduate Discrete Mathematics

This module is Optional for:

- Year 1 of USTA-G1G3 Undergraduate Mathematics and Statistics (BSc MMathStat)
- Year 1 of USTA-GG14 Undergraduate Mathematics and Statistics (BSc)

This module is Option list B for:

• Year 1 of UMAA-GV18 Undergraduate Mathematics and Philosophy with Intercalated Year