WM931-15 Data Science & Machine Learning

24/25

Department WMG Level Taught Postgraduate Level Module leader Amir Kayhani Credit value 15 Module duration 4 weeks Assessment 100% coursework Study locations University of Warwick main campus, Coventry Primary Distance or Online Delivery

Description

Introductory description

Data Science and Machine Learning have become key drivers of business change and value generation in the modern digital economy. The ability to derive insights, recommendations and automate actions from a wide range of datasets (traditional and non-traditional - i.e. Big Data) is integral to the competitive advantage of many of the world's largest businesses. This module provides practical exposure to these methods, as well as the underlying theories and concepts.

Module aims

This module aims to enable participants to select, implement and evaluate machine learning algorithms in data science. In particular, the module highlights several of the most common, and in-demand, modern algorithms including classification, regression, clustering, dimension reduction and ensemble methods. Alongside technical knowledge, participants should develop an understanding of the applicability of different types of machine learning to common problems, and best practice for data science and Big Data analytics projects.

Outline syllabus

This is an indicative module outline only to give an indication of the sort of topics that may be covered. Actual sessions held may differ.

Data Science Foundations: Core concepts of Data Science & Machine Learning; Data preprocessing & feature engineering.

Unsupervised learning: K-means clustering; DBSCAN; Principal Component Analysis; Association Rule Mining (Apriori algorithm).

Classification: Theoretical background; Decision Trees; Random Forest; KNN; Support Vector Machines; Neural Networks and Deep Learning; Model selection and evaluation.

Regression: Theoretical background; Linear models; Lasso Regression; Gaussian Process Regression; Model selection and evaluation.

Reinforcement Learning: Theoretical background, Q-learning, Deep Reinforcement Learning. Ensemble Methods: Bagging; Boosting; Voting.

Natural Language Processing: Theoretical background, Sentiment Analysis, Text-Processing, NER, TF-IDF, Large Language Models.

Handling Imbalanced Data: Biasing the algorithm, Under Sampling, Oversampling, SMOTE. Computational Complexity and High Performance Computing: Analysis of algorithms; Batch/Online algorithms

Machine Learning in Cloud: Fine tuning pre-trained models; SageMaker.

Learning outcomes

By the end of the module, students should be able to:

- Interpret and evaluate various use-cases and the applicability of data science and machine learning.
- Develop a comprehensive understanding of the different stages of data science projects.
- Implement optimised machine learning models and solutions and interpret, evaluate and critique the results.
- Develop comprehension of the core topics of data science, machine learning and artificial intelligence.
- Collaboratively implement and present a data science project, using optimised machine learning techniques, and interpret the results.

Indicative reading list

- Burns, S. (2019). Python machine learning: Machine learning and deep learning with python, scikit-learn, TensorFlow : Step-by-step tutorial for beginners. publisher not identified.
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT Press.
- Grus, J. (2019). Data science from scratch: First principles with python (Second ed.). O'Reilly Media.
- Swamynathan, M. (2019). Mastering machine learning with python in six steps: A practical implementation guide to predictive data analytics using python (2nd ed.). Apress L.P. https://doi.org/10.1007/978-1-4842-4947-5

Interdisciplinary

Statistics and computer science topics

International

Data science topics/skills are of high international demand

Subject specific skills

Data science, machine learning, statistics, ensemble learning, software development, data analysis

Transferable skills

Programming, statistics and modelling, team work, critical analysis

Study

Study time

Туре	Required	
Lectures	12 sessions of 1 hour (18%)	
Seminars	10 sessions of 1 hour (15%)	
Practical classes	8 sessions of 1 hour (12%)	
Online learning (independent)	35 sessions of 1 hour (54%)	
Total	65 hours	

Private study description

Combination of the following: -Independent learning materials and activities for programming, machine learning and machine learning in cloud -Reading list, book chapters and articles

Costs

No further costs have been identified for this module.

Assessment

You must pass all assessment components to pass the module.

Assessment group A3

	Weighting	Study time	Eligible for self-certification
Assessment component			
Group Assessment	30%	18 hours	No
In teams, participants creapproach. Peer marking	eate a data science so process will be adopte	lution on a real-wor ed in this assessme	ld dataset and present their nt.
Reassessment component			
Individual Presentation			Yes (extension)
The student create a data and will have a reflection	a science solution on a on the group work.	a real-world dataset	and present their approach
Assessment component			
Assignment	70%	42 hours	Yes (extension)
A two part submission - t topic; the second a worki	he first an essay-style ng program that can r	question on a data nodel a given datas	science/machine learning et.
Reassessment component is the s	ame		

Feedback on assessment

Group and individual presentation – verbal feedback after presentation Assignment - Annotated scripts returned to students, generic written feedback to group.

Availability

There is currently no information about the courses for which this module is core or optional.