PX160-10 Tutorial (Maths/Physics)

24/25

Department Physics Level Undergraduate Level 1 Module leader Michael Pounds Credit value 10 Module duration 25 weeks Assessment 100% coursework Study location University of Warwick main campus, Coventry

Description

Introductory description

The tutor's mark is made up from marks for answers to the assessed weekly problems (50%) and from work associated with five worksheets (50%). The worksheets cover some background mathematical material assumed by other modules.

Module web page

Module aims

To cover some background mathematical material assumed by other modules, and to help students to develop good self-learning and group-learning skills

Outline syllabus

This is an indicative module outline only to give an indication of the sort of topics that may be covered. Actual sessions held may differ.

Worksheets

Vectors:

Vectors have magnitude and direction. Addition and subtraction, the null vector. Geometry of simple figures written in vector notation, equation of lines and planes, equation for centroid of a

triangle. The dot product, the normal to a plane and alternative form for equations of planes, perpendiculars from points of a triangle to opposite sides meet at a point. Cross-product and the notion of an area in three dimensions as a vector. Equation of line of intersection of two planes. Triple scalar product, associative law, relation to volume of parallelopiped. Triple vector product

Matrices:

Motivation and definition. The 2 x 2 case: operations on vectors. Eigenvalues and eigenvectors. Diagonalizing matrices. Exponential of a diagonalizable matrix. Mention of the 3 x 3 and N x N cases.

Maths for Waves:

Notation for partial derivatives. Examples of equations admitting wave-like solutions: wave equation, advection equation, traffic flow. Linear operators, principle of superposition. Boundary conditions, reflection and transmission coefficients. Plane waves, exponential form. Energy in waves. Wave groups, group velocity.

Probability:

Definition of probability spaces and axioms. Discrete and continuous probability spaces. Random variables. Common probability distributions, including binomial, Poisson, normal distributions. Expectation and variance, multivariate distributions. Central limit theorem.

Statistics:

Measurements and Uncertainty. Independence, Covariance and Correlation. Conditional and marginal probabilities, Bayes' theorem. Bayesian inference. Information, Shannon entropy.

Weekly Problem Sheets:

You will be asked to hand in written answers to designated problems from the problem sheets and attempt designated problems from the Mastering Physics package.

Learning outcomes

By the end of the module, students should be able to:

- Work with vectors, wave-functions, probability theory and statistics at a level necessary to cope with all first year physics modules and some second year maths and statistics modules.
- Prepare and submit pieces of work on a weekly basis
- Discuss questions arising out of their modules in small groups

Subject specific skills

Mathematical techniques, physics problem-solving

Transferable skills

Communication, group working, problem-solving, self-study

Study

Study time

Туре	Required
Seminars	25 sessions of 1 hour (25%)
Tutorials	25 sessions of 1 hour (25%)
Private study	50 hours (50%)
Total	100 hours

Private study description

Studying material on worksheets, answering associated questions. Working on weekly problem sheets and computer problems

Costs

No further costs have been identified for this module.

Assessment

You do not need to pass all assessment components to pass the module.

Assessment group A2

	Weighting	Study time
Coursework	100%	
Worksheets and examples sheets	8	

Feedback on assessment

Personal tutorials and examples classes

Availability

Courses

This module is Core for:

- UPXA-GF13 Undergraduate Mathematics and Physics (BSc)
 - Year 1 of GF13 Mathematics and Physics
 - Year 1 of GF13 Mathematics and Physics

- UPXA-FG31 Undergraduate Mathematics and Physics (MMathPhys)
 - Year 1 of FG31 Mathematics and Physics (MMathPhys)
 - Year 1 of FG31 Mathematics and Physics (MMathPhys)