CS141-15 Functional Programming

23/24

Department

Computer Science

Level

Undergraduate Level 1

Module leader

Alexander Dixon

Credit value

15

Module duration

10 weeks

Assessment

Multiple

Study location

University of Warwick main campus, Coventry

Description

Introductory description

The principal aim of this module is to introduce students to the functional programming paradigm.

Module aims

Students should be able to understand the differences between imperative and functional programming, apply functional programming techniques, and write programs in Haskell.

Outline syllabus

This is an indicative module outline only to give an indication of the sort of topics that may be covered. Actual sessions held may differ.

- Differences between imperative and functional programming.
- Functional programming basics: expressions and reduction.
- Types, including parametric polymorphism.
- Ad-hoc polymorphism via type classes.
- Recursive and higher-order functions.
- Algebraic data types.
- Strict vs Lazy evaluation.
- Equational reasoning and inductive construction.

- Functors, Applicatives, Foldables, Traversables, and Monads.
- Type-level programming.

Learning outcomes

By the end of the module, students should be able to:

- Understand the differences between programming paradigms as well as their strengths and weaknesses in order to identify suitable programming languages for a particular task's needs.
- Apply key techniques of the functional programming paradigm to solve programming problems.
- Identify and exploit patterns in programs to design and implement programming abstractions.
- Apply formal reasoning techniques to prove properties about programs and calculate faster programs.
- Use different evaluation strategies to evaluate programs.

Indicative reading list

Please see Talis Aspire link for most up to date list.

View reading list on Talis Aspire

Subject specific skills

Understanding of Functional Programming as a programming paradigm, including intermediate knowledge of programming abstractions and formal reasoning. See syllabus for details.

Transferable skills

Technical skills. Critical thinking. Multitasking.

Study

Study time

Туре	Required	
Lectures	30 sessions of 1 hour (20%)	
Practical classes	10 sessions of 1 hour (7%)	
Private study	110 hours (73%)	
Total	150 hours	

Private study description

Background reading of recommended texts.

Work on unsupervised practical assignments.

Exam revision.

Costs

No further costs have been identified for this module.

Assessment

You do not need to pass all assessment components to pass the module.

Students can register for this module without taking any assessment.

Assessment group D3

	Weighting	Study time
Coursework 1	15%	

Coursework 1 15% Coursework 2 25%

Coursework 2. This assignment is worth more than 3 CATS and is not, therefore, eligible for self-certification.

In-person Examination 60%

CS141 exam

• Answerbook Pink (12 page)

Assessment group R1

Weighting	Study time
Weighting	Study time

100%

In-person Examination - Resit

CS141 resit examination

Answerbook Pink (12 page)

Feedback on assessment

Availability

Courses

This module is Optional for:

- UCSA-G500 Undergraduate Computer Science
 - Year 1 of G500 Computer Science
 - Year 1 of G500 Computer Science
- UCSA-G503 Undergraduate Computer Science MEng
 - Year 1 of G500 Computer Science
 - Year 1 of G503 Computer Science MEng
 - Year 1 of G503 Computer Science MEng
- Year 1 of UCSA-I1N1 Undergraduate Computer Science with Business Studies
- Year 1 of UCSA-G406 Undergraduate Computer Systems Engineering
- Year 1 of UCSA-G408 Undergraduate Computer Systems Engineering

This module is Option list B for:

- UCSA-G4G1 Undergraduate Discrete Mathematics
 - Year 1 of G4G1 Discrete Mathematics
 - Year 1 of G4G1 Discrete Mathematics
- Year 1 of UCSA-G4G3 Undergraduate Discrete Mathematics