This module runs in Term 1 and is an optional module intended for students in their third or fourth year of study who have previously taken preparatory modules in Statistics.
For Statistics students the pre-requisites are ST115 Introduction to Probability, ST218 Mathematical Statistics A, ST219 Mathematical Statistics B.
For Non-Statistics students the pre-requisites are ST111/112 Probability A&B and ST220 Introduction to Mathematical Statistics.
The coursework uses the statistical software package R, so basic knowledge in R such as covered in ST104 Statistical Laboratory I or ST952 Introduction to Statistical Practice is expected.
Multivariate data arises whenever several interdependent variables are measured simultaneously. Such high-dimensional data is becoming the rule, rather than the exception in many areas: in medicine, in the social and environmental sciences and in economics. The analysis of such multidimensional data often presents an exciting challenge that requires new statistical techniques which are usually implemented using computer packages. This module aims to give you a good and rigorous understanding of the geometric and algebraic ideas that these techniques are based on, before giving you a chance to try them out on some real data sets.
This is an indicative module outline only to give an indication of the sort of topics that may be covered. Actual sessions held may differ.
Multivariate data arises whenever several interdependent variables are measured simultaneously. Such high-dimensional data is becoming the rule, rather than the exception in many areas: in medicine, in the social and environmental sciences and in economics. The analysis of such multidimensional data often presents an exciting challenge that requires new statistical techniques which are usually implemented using computer packages. This module aims to give you a good and rigorous understanding of the geometric and algebraic ideas that these techniques are based on, before giving you a chance to try them out on some real data sets.
By the end of the module, students should be able to:
Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis.: Pearson Prentice Hall. Upper Saddle River, NJ.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). New York: Springer.
Friedman, J., Hastie, T., & Tibshirani, R. (2009). The elements of statistical learning (second edition). New York: Springer.
Efron, B., & Hastie, T. (2016). Computer age statistical inference (Vol. 5). Cambridge University Press.
Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: the lasso and generalizations. CRC press.
View reading list on Talis Aspire
TBC
TBC
Type | Required | Optional |
---|---|---|
Lectures | 30 sessions of 1 hour (20%) | 2 sessions of 1 hour |
Private study | 90 hours (60%) | |
Assessment | 30 hours (20%) | |
Total | 150 hours |
Weekly revision of lecture notes and materials, wider reading and practice exercises, working on assignments and preparing for examination.
No further costs have been identified for this module.
You do not need to pass all assessment components to pass the module.
Students can register for this module without taking any assessment.
Weighting | Study time | Eligible for self-certification | |
---|---|---|---|
Assignment 1 | 10% | 15 hours | Yes (extension) |
The assignment will contain a number of questions for which solutions and / or written responses will be required. The number of words noted below refers to the amount of time in hours that a well-prepared student who has attended lectures and carried out an appropriate amount of independent study on the material could expect to spend on this assignment. 500 words is equivalent to one page of text, diagrams, formula or equations; your ST323 Assignment 1 should not exceed 15 pages in length. |
|||
Assignment 2 | 10% | 15 hours | Yes (extension) |
The assignment will contain a number of questions for which solutions and / or written responses will be required. The number of words noted below refers to the amount of time in hours that a well-prepared student who has attended lectures and carried out an appropriate amount of independent study on the material could expect to spend on this assignment. 500 words is equivalent to one page of text, diagrams, formula or equations; your ST323 Assignment 2 should not exceed 15 pages in length. |
|||
In-person Examination | 80% | No | |
The examination paper will contain four questions, of which the best marks of THREE questions will be used to calculate your grade.
|
Weighting | Study time | Eligible for self-certification | |
---|---|---|---|
In-person Examination - Resit | 100% | No | |
The examination paper will contain four questions, of which the best marks of THREE questions will be used to calculate your grade.
|
Marked assignments will be available for viewing at the support office within 20 working days of the submission deadline. Cohort level feedback and solutions will be provided, and students will be given the opportunity to receive feedback via face-to-face meetings.
Solutions and cohort level feedback will be provided for the examination.
This module is Core optional for:
This module is Optional for:
This module is Core option list A for:
This module is Core option list B for:
This module is Option list A for:
This module is Option list B for: