This modules runs in Term 2.
This module is core for students with their home department in Statistics.
It is available as an option or unusual option for other students.
Pre-requisites:
Statistics Students: ST115 Introduction to Probability AND MA137 Mathematical Analysis
Non-Statistics Students: ST111 Probability A AND ST112 Probability B AND (MA131 Analysis I OR MA137 Mathematical Analysis)
Leads to: ST333 Applied Stochastic Processes and ST406 Applied Stochastic Processes with Advanced Topics.
Loosely speaking, a stochastic or random process is any measurable phenomenon which develops randomly in time. Only the simplest models will be considered in this course, namely those where the process moves by a sequence of jumps in discrete time steps. We will discuss: Markov chains, which use the idea of conditional probability to provide a flexible and widely applicable family of random processes; random walks, which serve as fundamental building blocks for constructing other processes as well as being important in their own right; and renewal theory, which studies processes which occasionally "begin all over again." Such processes are common tools in economics, biology, psychology and operations research, so they are very useful as well as attractive and interesting theories.
The aims of this module are to introduce the idea of a stochastic process, and to show how simple probability and matrix theory can be used to build this notion into a beautiful and useful piece of applied mathematics.
This is an indicative module outline only to give an indication of the sort of topics that may be covered. Actual sessions held may differ.
By the end of the module, students should be able to:
S.M. Ross, Introduction to Probability Models
G.R. Grimmett and D.R. Stirzaker, Probability and Random Processes
P.W. Jones and P. Smith, Stochastic Processes
J.R. Norris, Markov Chains
View reading list on Talis Aspire
TBC
TBC
Type | Required | Optional |
---|---|---|
Lectures | 30 sessions of 1 hour (25%) | 2 sessions of 1 hour |
Tutorials | 4 sessions of 1 hour (3%) | |
Private study | 62 hours (52%) | |
Assessment | 24 hours (20%) | |
Total | 120 hours |
Weekly revision of lecture notes and materials, wider reading and practice exercises, working on problem sets and preparing for examination.
No further costs have been identified for this module.
You do not need to pass all assessment components to pass the module.
Students can register for this module without taking any assessment.
Weighting | Study time | Eligible for self-certification | |
---|---|---|---|
Multiple Choice Quiz 1 | 3% | 4 hours | Yes (waive) |
A multiple choice quiz which will take place during the term that the module is delivered. |
|||
Multiple Choice Quiz 2 | 3% | 4 hours | Yes (waive) |
A multiple choice quiz which will take place during the term that the module is delivered. |
|||
Multiple Choice Quiz 3 | 4% | 4 hours | Yes (waive) |
A multiple choice quiz which will take place during the term that the module is delivered. |
|||
Written assignment | 10% | 12 hours | Yes (extension) |
The assignment will contain a number of questions for which solutions and / or written responses will be required. The preparation and completion time noted below refers to the amount of time in hours that a well-prepared student who has attended lectures and carried out an appropriate amount of independent study on the material could expect to spend on this assignment. You will write your answers on paper and submit to the Statistics Support Office. |
|||
In-person Examination | 80% | No | |
The examination paper will contain four questions, of which the best marks of THREE questions will be used to calculate your grade.
|
Weighting | Study time | Eligible for self-certification | |
---|---|---|---|
In-person Examination - Resit | 100% | No | |
The examination paper will contain four questions, of which the best marks of THREE questions will be used to calculate your grade.
|
Answers to problems sets will be marked and returned to you in a tutorial or seminar taking place the following week when you will have the opportunity to discuss it.
Solutions and cohort level feedback will be provided for the examination.
This module is Core for:
This module is Option list A for: