This module runs in term 1 and is core for students on an MSc in Statistics course. It is not available for undergraduate students.
The module content will include a thorough grounding in classical and Bayesian methods of statistical inference with an introduction to selected more recent developments in statistical methodology. Since MSc students have different background knowledge in statistics we start afresh. At the end of the course you will have a solid background in basic statistics and knowledge at an advanced level in some areas.
This is an indicative module outline only to give an indication of the sort of topics that may be covered. Actual sessions held may differ.
The module content includes thorough grounding in classical methods of statistical inference with an introduction to more recent developments in statistical methodology. The following items are going to be covered: data, probability, random variables, special univariate distributions, joint and conditional distributions, distributions of functions of random variables, methods of inference, inference using simulation, maximum likelihood estimation, Baysian inference, general linear model, ANOVA, generalised linear model.
By the end of the module, students should be able to:
Casella, G. and Berger, R. L., Statistical Inference, 2nd Ed, Duxbury.
Wasserman L.,All of Statistics: A Concise Course in Statistical Inference, Springer
An Introduction to Probability and Statistical Inference (second edition), by G.G. Roussas
Lecture notes will cover everything that is done in the course.
View reading list on Talis Aspire
TBC
TBC
Type  Required 

Lectures  30 sessions of 1 hour (20%) 
Private study  106 hours (71%) 
Assessment  14 hours (9%) 
Total  150 hours 
Weekly revision of lecture notes and materials, wider reading, practice exercises and preparing for examination.
No further costs have been identified for this module.
You do not need to pass all assessment components to pass the module.
Students can register for this module without taking any assessment.
Weighting  Study time  

Assignment 2  10%  7 hours 
Due in Term 1 Week 10. 

Assignment 1  10%  7 hours 
Due in Term 1 Week 7. 

Exam  80%  
The examination paper will contain four questions, of which the best marks of THREE questions will be used to calculate your grade. ~Platforms  Moodle

Marked assignments will be available for viewing at the support office within 20 working days of the submission deadline.
Solutions and cohort level feedback will be provided for the examination.
If you pass this module, you can take:
This module is Core for: